Oliveira, K. M. G.; Takahata, Y. QSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Tree. QSAR Comb. Sci. 2008, 27, 1020–1027.

QsarDB Repository

Oliveira, K. M. G.; Takahata, Y. QSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Tree. QSAR Comb. Sci. 2008, 27, 1020–1027.

QDB archive DOI: 10.15152/QDB.169   DOWNLOAD

QsarDB content

Property Activity: Activity against Leishmania donovani

Eq.3: QSAR model for nucleosides

Logistic regression (classification)

Open in:QDB ExplorerQDB Predictor

NameTypenAccuracy
Training settraining210.905
Validation setexternal validation140.571
Fig.4: Classification tree for nucleosides

Decision tree (classification)

Open in:QDB ExplorerQDB Predictor

NameTypenAccuracy
Training settraining210.952
Validation setexternal validation140.857

Citing

When using this QDB archive, please cite (see details) it together with the original article:

  • Piir, G. Data for: QSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Tree. QsarDB repository, QDB.169. 2015. https://doi.org/10.15152/QDB.169

  • Oliveira, K. M. G.; Takahata, Y. QSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Tree. QSAR Comb. Sci. 2008, 27, 1020–1027. https://doi.org/10.1002/qsar.200710172

Metadata

Show simple item record

dc.date.accessioned2015-09-14T08:07:48Z
dc.date.available2015-09-14T08:07:48Z
dc.date.issued2015-09-14
dc.identifier.urihttp://hdl.handle.net/10967/169
dc.identifier.urihttp://dx.doi.org/10.15152/QDB.169
dc.description.abstractWe employed two classification methods; first, a logistic regression, second, classification tree, to classify nucleoside activities against Leishmania donovani using a training set of 21 compounds. The compounds are classified either active or inactive. The model was validated using a test set of 14 compounds. Two descriptors, Mor26v and Gap(HOMO, HOMO-1), were selected. The logistic regression resulted classification accuracy of 90.5% for the training set, 67% for the test set after Applicability Domain analysis was performed. The method of classification tree resulted classification accuracy of 95% for the training set, 86% for the test set. It was shown that the lowest energy conformation can be used to build a QSAR model through examination of the whole conformations that lie above the lowest energy conformation in the energy window of 13 kcal/mol. The selected descriptor Mor26v distinguishes differences in molecular chirality, while Gap(HOMO, HOMO-1) distinguishes differences in electronic structures.
dc.publisherGeven Piir
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleOliveira, K. M. G.; Takahata, Y. QSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Tree. QSAR Comb. Sci. 2008, 27, 1020–1027.
qdb.property.endpoint6. Other (Nucleoside activity against Leishmania donovani)en_US
qdb.property.speciesLeishmania donovanien_US
qdb.descriptor.applicationDRAGON 3.0en_US
qdb.descriptor.applicationAMSOL 7.1en_US
qdb.prediction.applicationGRETL 1.6.0en_US
qdb.prediction.applicationORANGEen_US
bibtex.entryarticleen_US
bibtex.entry.authorOliveira, K. M. G.
bibtex.entry.authorTakahata, Y.
bibtex.entry.doi10.1002/qsar.200710172en_US
bibtex.entry.journalQSAR Comb. Sci.en_US
bibtex.entry.monthAug
bibtex.entry.number8en_US
bibtex.entry.pages1020–1027en_US
bibtex.entry.titleQSAR Modeling of Nucleosides Against Amastigotes of Leishmania donovani Using Logistic Regression and Classification Treeen_US
bibtex.entry.volume27en_US
bibtex.entry.year2008
qdb.model.typeLogistic regression (classification)en_US
qdb.model.typeDecision tree (classification)en_US


Files in this item

NameDescriptionFormatSizeView
2008QCS1020.qdb.zipLogistic regression and classification tree models for leishmanicidal activityapplication/zip9.585KbView/Open
Files associated with this item are distributed
under Creative Commons license.

This item appears in the following Collection(s)

Show simple item record