38 compounds | Property pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)]
| ID | Name | pIGC50 | Details | 
|---|---|---|---|
| 1 | 1,2-Bis (4-pyridyl)ethane | -0.03 | View | 
| 2 | 2,3,5,6-Tetrachloro-4-pyridinethiol | 1.37 | View | 
| 3 | 2,4-Dihydroxypyridine | -1.46 | View | 
| 4 | 2,6-Diaminopyridine | -0.59 | View | 
| 5 | 2,6-Dichloro-3-nitropyridine | 2.03 | View | 
| 6 | 2,6-Dihydroxy-4-methyl-3-pyridine carbonitrile | NTAS | View | 
| 7 | 2,6-Diphenylpyridine | NTAS | View | 
| 8 | 2,6-Pyridinecarboxylic acid | 0.12 | View | 
| 9 | 2-Amino-3-hydroxypyridine | 0.05 | View | 
| 10 | 2-Amino-3-nitropyridine | -0.01 | View | 
| 11 | 2-Amino-3-picoline | -0.57 | View | 
| 12 | 2-Amino-5-chloropyridine | -0.03 | View | 
| 13 | 2-Chloro-3,5-dinitropyridine | 2.64 | View | 
| 14 | 2-Chloro-5-nitropyridine | 0.80 | View | 
| 15 | 2-Chloro-6-methoxy-3-nitropyridine | 1.36 | View | 
| 16 | 2-Cyanopyridine | -0.83 | View | 
| 17 | 2-Hydroxy-6-methylpyridine | -1.35 | View | 
| 18 | 2-Methoxy-5-nitropyridine | -0.01 | View | 
| 19 | 3,5-Dibromopyridine | 0.32 | View | 
| 20 | 3-Bromopyridine | -0.49 | View | 
| 21 | 3-Chloropyridine | -0.81 | View | 
| 22 | 3-Cyano-4,6-dimethyl-2-hydroxylpyridine | -0.70 | View | 
| 23 | 3-Hydroxy-6-methyl-2-nitropyridine | 0.39 | View | 
| 24 | 3-Phenylpyridine | 0.47 | View | 
| 25 | 4,4'-Dipyridyl | 0.21 | View | 
| 26 | 4-Acetylpyridine | -0.87 | View | 
| 27 | 4-Aminopyridine | -0.44 | View | 
| 28 | 4-Benzylpyridine | 0.65 | View | 
| 29 | 4-Bromophenyl-3-pyridylketone | 0.82 | View | 
| 30 | 4-Ethylpyridine | -0.46 | View | 
| 31 | 4-Hydroxypyridine | -1.59 | View | 
| 32 | 4-Nitropyridine | 0.41 | View | 
| 33 | 4-Pyridinealdoxime | -0.55 | View | 
| 34 | 5-Chloro-2,3-pyridinediol | 0.57 | View | 
| 35 | 5-Chloro-2-pyridinol | -0.75 | View | 
| 36 | 5-Ethyl-2-methyl pyridine | -0.18 | View | 
| 37 | Pentachloropyridine | 1.68 | View | 
| 38 | Pyridine | -1.27 | View | 
Seward, J. R.; Cronin, M. T. D.; Schultz, T. W. The effect of precision of molecular orbital descriptors on toxicity modeling of selected pyridines. SAR QSAR Environ. Res. 2002, 13, 325–340. https://doi.org/10.1080/10629360290002802
Schultz, T. W.; Moulton, B. A. Structure-activity relationships of selected pyridines: I. Substituent constant analysis. Ecotox. Environ. Safe. 1985, 10, 97–111. https://doi.org/10.1016/0147-6513(85)90011-9
Schultz, T. W.; Applehans, F. M. Correlations for the acute toxicity of multiple nitrogen substituted aromatic molecules. Ecotox. Environ. Safe. 1985, 10, 75–85. https://doi.org/10.1016/0147-6513(85)90009-0
Schultz, T. W.; Dawson, D. A.; Lin, D. T. Comparative toxicity of selected nitrogen-containing aromatic compounds in the Tetrahymena pyriformis and Pimephales promelas test systems. Chemosphere 1989, 18, 2283–2291.
Schultz, T. W. TETRATOX: Tetrahymena pyriformis population growth impairment endpoint - a surrogate for fish lethality. Toxicol. Mech. Meth. 1997, 7, 289–309. https://doi.org/10.1080/105172397243079