10967/36 - QDB Compounds

QsarDB Repository

Baláž, Š.; Lukacova, V. Subcellular pharmacokinetics and its potential for library focusing. J. Mol. Graph. Model. 2002, 20, 6, 479–490.

129 compounds | Property pIGC50: 96-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)]

IDNamepIGC50RefDetails
1H-0.321[1]View
22-F0.185[1]View
32-Cl0.277[2]View
42-Br0.504[2]View
52-NO20.670[2]View
62-CH3-0.274[2]View
72-CH2CH30.176[2]View
82-CH2CH=CH20.346[2]View
92-CH(CH3)20.803[2]View
102-C(CH3)31.239[2]View
112-C6H51.094[2]View
122-CN0.031[2]View
132-CHO0.483[2]View
142-C(O)CH30.078[2]View
152-C(O)NH2-0.242[2]View
162-CH2OH-0.953[2]View
172-CH=NOH-0.252[2]View
182-NHC(O)CH3[2]View
193-F0.473[2]View
203-Cl0.871[1]View
213-I1.118[2]View
223-NO20.506[2]View
233-CH3-0.062[2]View
243-CH2CH30.229[2]View
253-CH(CH3)20.609[2]View
263-C(CH3)30.730[2]View
273-C6H51.351[2]View
283-(CH2)14CH3NTAS[2]View
293-CN-0.065[2]View
303-CHO0.085[2]View
313-C(O)CH3-0.381[2]View
323-OCH3-0.145[2]View
333-CH2OH-1.043[2]View
343-C(O)OCH3-0.046[2]View
353-C(O)OCH2CH30.478[2]View
364-F0.017[2]View
374-Cl0.545[2]View
384-Br0.681[2]View
394-I0.854[2]View
404-NO0.654[2]View
414-NO21.926[2]View
424-CH3-0.192[3]View
434-CH2CH30.206[2]View
444-(CH2)2CH30.635[2]View
454-CH(CH3)20.473[2]View
464-CH(CH3)CH2CH30.980[2]View
474-C(CH3)30.913[2]View
484-C(CH3)2CH2CH31.233[2]View
494-C5H91.292[2]View
504-C6H51.383[2]View
514-CH2-C6H51.195[2]View
524-C(CH3)2CH2C(CH3)32.092[2]View
534-C(C6H5)3NTAS[2]View
544-CF30.618[2]View
554-CN0.516[2]View
564-CHO0.266[2]View
574-CH2OH[2]View
584-C(O)CH3-0.093[2]View
594-C(O)CH2CH30.056[2]View
604-C(O)C6H51.024[2]View
614-CH2CN-0.384[2]View
624-OCH3-0.143[2]View
634-OCH2CH30.013[2]View
644-O(CH2)3CH30.702[2]View
654-OCH2C6H51.038[2]View
664-O(CH2)6CH31.648[2]View
674-O(CH2)7CH32.033[2]View
684-NHC(O)CH3-0.819[2]View
694-C(O)NH2-0.780[2]View
704-(CH2)2OH-0.828[2]View
714-C(O)OCH30.084[4]View
724-C(O)OCH2CH30.572[2]View
734-N=N-C6H51.655[4]View
744-OC6H51.355[5]View
752,3-diCH30.122[6]View
762,3-diCl1.271[6]View
772,4-diCH3-0.029[3]View
782-Br, 4-CH30.789[6]View
792,4-diCl1.036[3]View
802-CH3, 4-Cl0.700[6]View
812,4-diBr1.403[6]View
822-C(CH3)3, 4-CH31.297[6]View
832,4-diNO21.096[4]View
842-NO2, 5-F1.123[1]View
852,5-diCH30.009[3]View
862-Cl, 5-CH30.640[6]View
872,5-diCl1.128[6]View
882,5-diNO20.929[7]View
892,6-diF0.396[6]View
902,6-diNO20.573[7]View
912,6-diC6H52.113[6]View
923,4-diCH30.122[6]View
933-Cl, 4-F0.842[6]View
943-CH3, 4-Cl0.795[4]View
953,4-diCl1.745[8]View
963,5-diCH30.113[6]View
973,5-diCl1.562[6]View
982,3,5-triCH30.360[6]View
992,3,5-triCl2.373[8]View
1002,3,6-triCH30.418[3]View
1012,4,6-triC(CH3)3NTAS[2]View
1022,4,6-triC6H5NTAS[2]View
1032,4,5-triCl2.097[8]View
1042-CH(CH3)2, 4-Cl, 5-CH31.862[6]View
1052,4,6-triCl1.695[6]View
1062,4,6-triBr2.050[3]View
1073-CH3, 4-Cl, 6-NO21.635[1]View
1082,6-diCH3, 4-Br1.278[6]View
1092-CH3, 4-Br, 6-Cl1.277[6]View
1102,6-diCl, 4-Br1.779[6]View
1112,6-diC(CH3)3, 4-CH31.788[6]View
1122,4-diCH3, 6-C(CH3)31.245[6]View
1132,6-diNO2, 4-CH31.230[7]View
1142,6-diNO2, 4-C(CH3)31.802[1]View
1152,6-diBr, 4-NO21.357[7]View
1162,4-diBr, 6-C6H52.208[1]View
1172,4-diCl, 6-NO21.750[7]View
1182,6-diI, 4-NO21.812[7]View
1192,4,6-triNO2-0.155[7]View
1202-CH3, 4,6-diNO21.729[4]View
1213,4,5-triCH30.930[1]View
1223,5-diCH3, 4-Cl1.203[6]View
1232,3,4,5-tetraCl2.699[8]View
1242,3,5,6-tetraF1.167[7]View
1252,3,5,6-tetraCl2.222[8]View
1262-CH3, 3,4,5,6-TetraBr2.573[7]View
127pentaF1.631[7]View
128pentaCl2.523[8]View
129pentaBr2.664[7]View

Bibliography

  1. Schultz, T. W.; Bearden, A. P.; Jaworska, J. S. A novel QSAR approach for estimating toxicity of phenols. SAR QSAR Environ. Res. 1996, 5, 99–112. https://doi.org/10.1080/10629369608031710

  2. Schultz, T. W.; Lin, D. T.; Wesley, S. K. QSARs for monosubstituted phenols and the polar narcosis mechanism of toxicity. Quality Assur. Good Pract. Regul. Law 1992, 1, 132–143.

  3. Schultz, T. W.; Riggin, G. W. Predictive correlations for the toxicity of alkyl- and halogen-substituted phenols. Toxicol. Lett. 1985, 25, 47–54. https://doi.org/10.1016/0378-4274(85)90099-2

  4. Schultz, T. W.; Holcombe, G. W.; Phipps, G. L. Relationships of quantitative structure-activity to comparative toxicity of selected phenols in the Pimephales promelas and Tetrahymena pyriformis test systems. Ecotox. Environ. Saf. 1986, 12, 146–153. https://doi.org/10.1016/0147-6513(86)90051-5

  5. Jaworska, J. S.; Schultz, T. W. Quantitative Relationships of Structure-Activity and Volume Fraction For Selected Nonpolar and Polar Narcotic Chemicals. SAR QSAR Environ. Res. 1993, 1, 3–19. https://doi.org/10.1080/10629369308028812

  6. Schultz, T. W.; Arnold, L. M.; Wilke, T. S.; Moulton, M. P. Relationships of quantitative structure-activity for normal aliphatic alcohols. Ecotox. Environ. Saf. 1989, 19, 243–253. https://doi.org/10.1016/0147-6513(90)90026-2

  7. Cajina-Quezada, M.; Schultz, T. W. Structure-toxicity relationships for selected weak acid respiratory uncouplers. Aquat. Toxicol. 1990, 17, 239–252. https://doi.org/10.1016/0166-445X(90)90066-X

  8. Bryant, S. E.; Schultz, T. W. Toxicological Assessment of Biotransformation Products of Pentachlorophenol: Tetrahymena Population Growth Impairment. Arch. Environ. Con. Tox. 1994, 26, 299–303. https://doi.org/10.1007/BF00203555

  9. Baláž, Š.; Lukacova, V. Subcellular pharmacokinetics and its potential for library focusing. J. Mol. Graph. Model. 2002, 20, 479–490. https://doi.org/10.1016/S1093-3263(01)00149-8