Käärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Nanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbon. Int. J. Mol. Sci. 2024, 25, 11696.

QsarDB Repository

Käärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Nanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbon. Int. J. Mol. Sci. 2024, 25, 11696.

QDB archive DOI: 10.15152/QDB.265   DOWNLOAD

QsarDB content

Property Q: Adsorption capacity [mg/g]

Eq1: Model for adsorption capacity

Regression model (regression)

Open in:QDB ExplorerQDB Predictor

NameTypen

R2

σ

Training settraining700.70261.509
Test setexternal validation170.69563.349

Citing

When using this QDB archive, please cite (see details) it together with the original article:

  • Käärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Data for: Nanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbon. QsarDB repository, QDB.265. 2024. https://doi.org/10.15152/QDB.265

  • Käärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Nanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbon. Int. J. Mol. Sci. 2024, 25, 11696. https://doi.org/10.3390/ijms252111696

Metadata

Show simple item record

dc.date.accessioned2024-10-25T07:41:49Z
dc.date.available2024-10-25T07:41:49Z
dc.date.issued2024-10-25
dc.identifier.urihttp://hdl.handle.net/10967/265
dc.identifier.urihttp://dx.doi.org/10.15152/QDB.265
dc.description.abstractDrug substances in water bodies and groundwater have become a significant threat to the surrounding environment. This study focuses on the ability of the nanoporous carbon materials to remove ciprofloxacin from aqueous solutions under specific experimental conditions and on the development of the mathematical model that would allow describing the molecular interactions of the adsorption process and calculating the adsorption capacity of the material. Thus, based on the adsorption measurements of the 87 carbon materials, it was found that, depending on the porosity and pore size distribution, adsorption capacity values varied between 55 and 495 mg g-1. For a more detailed analysis of the effects of different carbon textures and pores characteristics, a Quantitative nano-Structure-Property Relationship (QnSPR) was developed to describe and predict the ability of a nanoporous carbon material to remove ciprofloxacin from aqueous solutions. The adsorption capacity of potential nanoporous carbon-based adsorbents for the removal of ciprofloxacin was shown to be sufficiently accurately described by a three-parameter multi-linear QnSPR equation (R² = 0.70). This description was achieved only with parameters describing the texture of the carbon material such as specific surface area (Sdft) and pore size fractions of 1.1-1.2 nm (𝑉𝑁2[1.1−1.2]) and 3.3-3.4 nm (𝑉𝑁2[3.3−3.4]) for poresen_US
dc.publisherMaike Käärik
dc.publisherNadežda Krjukova
dc.publisherUko Maran
dc.publisherMara Oja
dc.publisherGeven Piir
dc.publisherJaan Leis
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleKäärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Nanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbon. Int. J. Mol. Sci. 2024, 25, 11696.
qdb.property.endpoint6. Otheren_US
qdb.prediction.applicationR 4.3.2en_US
bibtex.entryarticleen_US
bibtex.entry.authorKäärik, Maike
bibtex.entry.authorKrjukova, Nadežda
bibtex.entry.authorMaran, Uko
bibtex.entry.authorOja, Mare
bibtex.entry.authorPiir, Geven
bibtex.entry.authorLeis, Jaan
bibtex.entry.doi10.3390/ijms252111696
bibtex.entry.journalInt. J. Mol. Sci.en_US
bibtex.entry.pages11696
bibtex.entry.titleNanomaterial texture-based machine learning of ciprofloxacin adsorption on nanoporous carbonen_US
bibtex.entry.volume25
bibtex.entry.year2024
qdb.model.typeRegression model (regression)en_US


Files in this item

NameDescriptionFormatSizeView
2024IJMS.qdb.zipModel for ciprofloxacin adsorptionapplication/zip7.483KbView/Open
Files associated with this item are distributed
under Creative Commons license.

This item appears in the following Collection(s)

Show simple item record