Kotli, M.; Piir, G.; Maran, U. Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data. ACS Omega 2025, 10, 4732–4744.

QsarDB Repository

Kotli, M.; Piir, G.; Maran, U. Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data. ACS Omega 2025, 10, 4732–4744.

QDB archive DOI: 10.15152/QDB.263   DOWNLOAD

QsarDB content

Property NOEC_class: reproductive toxicity class of No-Observed-Effect Concentration for earthworms i

modelA: Model A i

Ensemble model (classification)

Open in:QDB ExplorerQDB Predictor

NameTypenAccuracy
Training (under sampled)training921.000
Training (all)validation2410.705
Validationexternal validation610.656
Testexternal validation1470.619
modelB: Model B i

Ensemble model (classification)

Open in:QDB ExplorerQDB Predictor

NameTypenAccuracy
Training (under sampled)training1021.000
Training (all)validation2410.876
Validationexternal validation610.672
Testexternal validation1470.687
model_AB: model_AB i

Ensemble model ensemble (classification)

Open in:QDB ExplorerQDB Predictor

NameTypenAccuracy
Training (under sampled)training511.000
Training (all)validation1940.853
Validationexternal validation140.750
Testexternal validation1470.785

Property NOEC: reproductive toxicity of No-Observed-Effect Concentration for earthworms as mg/kg in soil [mg/kg] i

Citing

When using this QDB archive, please cite (see details) it together with the original article:

  • Kotli, M.; Piir, G.; Maran, U. Data for: Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data. QsarDB repository, QDB.263. 2024. https://doi.org/10.15152/QDB.263

  • Kotli, M.; Piir, G.; Maran, U. Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data. ACS Omega 2025, 10, 4732–4744. https://doi.org/10.1021/acsomega.4c09719

Metadata

Show simple item record

dc.contributor.otherThis work was supported by the Ministry of Education and Research, Republic of Estonia, through the Estonian Research Council (grant number PRG1509), Ministry of Climate, Republic of Estonia (grant 4-4/22/19), Ministry of Social Affairs, Republic of Estonia (grants 3-4/1593-1, 3-4/2332-1), and European Union through Horizon Europe Health Framework Program project “Partnership for the Assessment of Risks from Chemicals (Grant ID 101057014).″
dc.date.accessioned2024-10-09T12:03:43Z
dc.date.available2024-10-09T12:03:43Z
dc.date.issued2024-10-09
dc.identifier.urihttp://hdl.handle.net/10967/263
dc.identifier.urihttp://dx.doi.org/10.15152/QDB.263
dc.description.abstractThe earthworm is a key indicator species in soil ecosystems. This makes the reproductive toxicity of chemical compounds to earthworms a desired property of determination and makes computational models necessary for descriptive and predictive purposes. Thus, the aim was to develop an advanced Quantitative Structure–Activity Relationship modeling approach for this complex property with imbalanced data. The approach integrated gradient-boosted decision trees as classifiers with a genetic algorithm for feature selection and Bayesian optimization for hyperparameter tuning. An additional goal was to analyze and interpret, using SHAP values, the structural features encoded by the molecular descriptors that contribute to pesticide toxicity and nontoxicity, the most notable of which are solvation entropy and a number of hydrolyzable bonds. The final model was constructed as a stacked ensemble of models and combined the strengths of the individual models. Evaluation of this model with an external test set of 147 compounds demonstrated a well-defined applicability domain and sufficient predictive capabilities with a Balanced Accuracy of 77%. The model representation follows FAIR principles and is available on QsarDB.org.en_US
dc.publisherMihkel Kotli
dc.publisherGeven Piir
dc.publisherUko Maran
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleKotli, M.; Piir, G.; Maran, U. Predictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Data. ACS Omega 2025, 10, 4732–4744.
qdb.property.endpoint3. Ecotoxic effects 3.8. Toxicity to earthwormsen_US
qdb.property.speciesEisenia fetidaen_US
qdb.descriptor.applicationDRAGON 6.0.40en_US
qdb.prediction.applicationscikit-learn 1.1.3en_US
bibtex.entryarticleen_US
bibtex.entry.authorKotli, Mihkel
bibtex.entry.authorPiir, Geven
bibtex.entry.authorMaran, Uko
bibtex.entry.doi10.1021/acsomega.4c09719
bibtex.entry.journalACS Omega
bibtex.entry.pages4732–4744
bibtex.entry.titlePredictive Modeling of Pesticides Reproductive Toxicity in Earthworms Using Interpretable Machine-Learning Techniques on Imbalanced Dataen_US
bibtex.entry.volume10
bibtex.entry.year2025
qdb.model.typeEnsemble model (classification)en_US
qdb.model.typeEnsemble model ensemble (classification)en_US
qdb.descriptor.calculationmodelA
qdb.descriptor.calculationmodelB
qdb.descriptor.calculationmodel_AB


Files in this item

NameDescriptionFormatSizeView
arch_omega.zipData and modelsapplication/zip363.2KbView/Open
Files associated with this item are distributed
under Creative Commons license.

This item appears in the following Collection(s)

Show simple item record