10967/192 - QDB Compounds

QsarDB Repository

Kim, S.-J.; Lee, H.; Kwon, J.-H. Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between isolated plant cuticles and water. Sci. Total Environ. 2014, 494-495, 113–118.

56 compounds | Property logKcutw: Plant cuticles/water partition coefficient as logKcutw [L/kg(cut)]

IDNamelogKcutwRefDetails
1Acenaphthene i4.27[1]View
2Phenanthrene i5.19[1]View
3Anthracene i5.2[1]View
4Fluoranthene i5.89[1]View
5Pyrene i5.98[1]View
6Benz[a]anthracene i6.57[1]View
7Chrysene i6.41[1]View
8Benzo[a]pyrene i7.01[1]View
9Dibenz[a,h]anthracene i7.55[1]View
10Benzo[ghi]perylene i7.41[1]View
11Acenaphthene i4.46[1]View
12Phenanthrene i5.38[1]View
13Anthracene i5.24[1]View
14Fluoranthene i5.9[1]View
15Pyrene i5.92[1]View
16Benz[a]anthracene i6.5[1]View
17Chrysene i6.45[1]View
18Benzo[a]pyrene i6.94[1]View
19Dibenz[a,h]anthracene i7.51[1]View
20Benzo[ghi]perylene i7.63[1]View
21Methanol-1.15[2]View
22Phenol1.51[2]View
23Phenol1.58[2]View
24Phenol1.59[2]View
25Metribuzin1.48[3]View
264-Chlorophenol2.09[4]View
274-Chlorophenol2.07[4]View
284-Chlorophenol2.06[4]View
294-Chlorophenol1.5[4]View
30Atrazine2.15[2]View
31Atrazine2.16[2]View
32Atrazine2.12[2]View
33Atrazine2.19[2]View
34Atrazine1.9[3]View
35Triadimenol3.37[2]View
36Triadimenol3.26[2]View
37Triadimenol3.37[2]View
38Triadimenol3.37[2]View
39Bitertanol3.77[2]View
40Bitertanol3.95[2]View
41Bitertanol3.91[2]View
42Bitertanol3.85[2]View
43Phenanthrene3.82[5]View
44Pyrene4.61[5]View
45Hexachlorobenzene5.7[2]View
46Hexachlorobenzene5.74[2]View
47Hexachlorobenzene5.83[2]View
48Hexachlorobenzene5.8[2]View
49Perylene6.45[2]View
50Perylene6.2[2]View
51Perylene6.5[2]View
52Perylene6.55[2]View
53Bis(2-ethylhexyl)phthalate7.22[2]View
54Bis(2-ethylhexyl)phthalate7.28[2]View
55Bis(2-ethylhexyl)phthalate7.32[2]View
56Bis(2-ethylhexyl)phthalate7.48[2]View

Bibliography

  1. Kim, S.-J.; Lee, H.; Kwon, J.-H. Measurement of partition coefficients for selected polycyclic aromatic hydrocarbons between isolated plant cuticles and water. Sci. Total Environ. 2014, 494-495, 113–118. https://doi.org/10.1016/j.scitotenv.2014.06.119

  2. Sabljic, A.; Guesten, H.; Schoenherr, J.; Riederer, M. Modeling plant uptake of airborne organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environmental Science & Technology 1990, 24, 1321–1326. https://doi.org/10.1021/es00079a004

  3. Kirsch, T.; Kaffarnik, F.; Riederer, M.; Schreiber, L. Cuticular permeability of the three tree speciesPrunus IaurocerasusL.,Ginkgo bilobaL. andJuglans regiaL.: comparative investigation of the transport properties of intact leaves, isolated cuticles and reconstituted cuticular waxes. Journal of Experimental Botany 1997, 48, 1035–1045. https://doi.org/10.1093/jxb/48.5.1035

  4. Li, Y.; Deng, Y.; Chen, B. Sorption of chlorophenols onto fruit cuticles and potato periderm. Journal of Environmental Sciences 2012, 24, 675–681. https://doi.org/10.1016/s1001-0742(11)60891-7

  5. Li, Y.; Chen, B.; Zhu, L. Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions. Environmental Pollution 2010, 158, 2478–2484. https://doi.org/10.1016/j.envpol.2010.03.021