Enoch, S. J.; Roberts, D. W. Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations. Chem. Res. Toxicol. 2013, 26, 5, 767-774.

QsarDB Repository

Enoch, S. J.; Roberts, D. W. Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations. Chem. Res. Toxicol. 2013, 26, 5, 767-774.

QDB archive DOI: 10.15152/QDB.112   DOWNLOAD

QsarDB content

Property pEC3: Skin sensitisation potency in the local lymph node assay (LLNA) as log(1/EC3) [log(L/mol)]

Eq1: Initial correlation with all data

Regression model (regression)

Open in:QDB ExplorerQDB Predictor

NameTypen

R2

σ

Training settraining300.0180.470
Eq2: Statistical outliers (ID: 1,19,20,21) eliminated

Regression model (regression)

Open in:QDB ExplorerQDB Predictor

NameTypen

R2

σ

Training settraining260.4270.212
Eq3: Correlation improved with surface area descriptor

Regression model (regression)

Open in:QDB ExplorerQDB Predictor

NameTypen

R2

σ

Training settraining260.5960.178
Eq4: Final correlation (eliminated ID: 28)

Regression model (regression)

Open in:QDB ExplorerQDB Predictor

NameTypen

R2

σ

Training settraining250.7940.128

Citing

When using this QDB archive, please cite (see details) it together with the original article:

  • Piir, G. Data for: Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations. QsarDB repository, QDB.112. 2014. https://doi.org/10.15152/QDB.112

  • Enoch, S. J.; Roberts, D. W. Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations. Chem. Res. Toxicol. 2013, 26, 767-774. https://doi.org/10.1021/tx4000655

Metadata

Show simple item record

dc.date.accessioned2014-03-27T18:29:26Z
dc.date.available2014-03-27T18:29:26Z
dc.date.issued2014-03-27
dc.identifier.urihttp://hdl.handle.net/10967/112
dc.identifier.urihttp://dx.doi.org/10.15152/QDB.112
dc.description.abstractThis study outlines the development of a series of quantitative mechanistic models enabling skin sensitization potency in the LLNA to be predicted for direct acting Michael acceptors. These models utilized several computational descriptors based on knowledge of the Michael addition reaction mechanism. The key descriptor was calculated using density functional theory and modeled the stability of the reaction intermediate. A second descriptor relating to the available surface area at the site of the reaction was also found to be important. Several poorly predicted compounds were identified, and in all cases, these could be rationalized mechanistically. The analysis of these compounds allowed a well-defined mechanistically driven applicability domain to be developed. The study showed thatin silico quantitative mechanistic models, with a well-defined applicability domain, can be used to predict skin sensitization potency in the LLNA. The approach presented has the potential to be of use as part of a weight of evidence approach for predicting skin sensitization without the use of animals in risk assessment.
dc.publisherGeven Piir
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleEnoch, S. J.; Roberts, D. W. Predicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculations. Chem. Res. Toxicol. 2013, 26, 5, 767-774.
qdb.property.endpoint4. Human health effects 4.6. Skin sensitisationen_US
qdb.property.speciesMus musculus (Mouse)
qdb.descriptor.applicationGaussian 09en_US
qdb.descriptor.applicationChimeraen_US
qdb.prediction.applicationMinitab 16en_US
bibtex.entryarticleen_US
bibtex.entry.authorEnoch, S. J.
bibtex.entry.authorRoberts, D. W.
bibtex.entry.doi10.1021/tx4000655en_US
bibtex.entry.journalChem. Res. Toxicol.en_US
bibtex.entry.number5en_US
bibtex.entry.pages767-774en_US
bibtex.entry.titlePredicting Skin Sensitization Potency for Michael Acceptors in the LLNA Using Quantum Mechanics Calculationsen_US
bibtex.entry.volume26en_US
bibtex.entry.year2013
qdb.model.typeRegression model (regression)en_US


Files in this item

NameDescriptionFormatSizeView
2013CRT767.qdb.zipLinear model for Michael acceptorsapplication/zip29.04KbView/Open
Files associated with this item are distributed
under Creative Commons license.

This item appears in the following Collection(s)

Show simple item record