10967/266 - QDB Compounds

QsarDB Repository

Toots, K. M.; Sild, S.; Leis, J.; Acree, W. E.; Maran, U. A multicomponent QSPR approach to describe and predict gas-ionic liquid distribution of organic solutes using machine learning. J. Mol. Liq. 2025, 436, 128184.

Compound

ID:N6524
Name:caffeine, 1-octyl-3-methylimidazolium hexafluorophosphate
Description:caffeine [MOIm]+[PF6]-
Labels:
CAS:
InChi Code:InChI=1S/C12H23N2.C8H10N4O2.F6P/c1-3-4-5-6-7-8-9-14-11-10-13(2)12-14;1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2;1-7(2,3,4,5)6/h10-12H,3-9H2,1-2H3;4H,1-3H3;/q+1;;-1

Properties

logK: Gas-ionic liquid partition coefficient

ValueSource or prediction
9.197

experimental value

8.606935564585614

MLR: Multiple Linear Regression QSAR model for the gas-ionic liquid partition coefficient of organic solutes (MLR training predictions)

9.401112357142853

RF: Random Forest Regression QSAR model for gas-ionic liquid partition coefficient of organic solutes (RF training predictions)