10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:975
Name:2-nitrobenzamide
Description:
Labels:Neutral
CAS:610-15-1
InChi Code:InChI=1/C7H6N2O3/c8-7(10)5-3-1-2-4-6(5)9(11)12/h1-4H,(H2,8,10)/f/h8H2

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
-0.72

experimental value

-0.56

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

-0.07

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

-0.73

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

-0.44

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

-0.89

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.09

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

-0.72

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

-0.35

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

-0.77

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

-0.68

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

-0.67

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

-0.58

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)