10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:927
Name:5-chloro-2-nitrobenzamide
Description:
Labels:Neutral
CAS:40763-96-0
InChi Code:InChI=1/C7H5ClN2O3/c8-4-1-2-6(10(12)13)5(3-4)7(9)11/h1-3H,(H2,9,11)/f/h9H2

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
-0.32

experimental value

-0.11

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.35

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

-0.31

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.09

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

-0.89

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

-0.59

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

-0.31

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.21

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

-0.26

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

0.24

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

-0.35

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.43

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)