10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:795
Name:2-chloro-N,N-diethylacetamide
Description:
Labels:Neutral
CAS:2315-36-8
InChi Code:InChI=1/C6H12ClNO/c1-3-8(4-2)6(9)5-7/h3-5H2,1-2H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.52

experimental value

0.75

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

1.14

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.51

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.04

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

0.01

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.23

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.45

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

1.3

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.37

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

-0.21

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.53

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

-0.12

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)