10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:616
Name:2,4-dinitroaniline
Description:
Labels:Neutral
CAS:97-02-9
InChi Code:InChI=1/C6H5N3O4/c7-5-2-1-4(8(10)11)3-6(5)9(12)13/h1-3H,7H2

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.62

experimental value

0.75

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.94

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.92

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

1.28

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

0.96

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.16

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.68

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

1.13

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.86

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.11

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.62

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

1.11

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)