10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:584
Name:3-fluorophenol
Description:
Labels:Neutral
CAS:372-20-3
InChi Code:InChI=1/C6H5FO/c7-5-2-1-3-6(8)4-5/h1-4,8H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.43

experimental value

0.27

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

-0.13

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.32

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

-0.37

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

-0.08

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

-0.32

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.29

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

-0.17

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.42

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

-0.41

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.39

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

-0.42

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)