10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:541
Name:4-bromo-2-nitrophenol
Description:
Labels:Neutral
CAS:7693-52-9
InChi Code:InChI=1/C6H4BrNO3/c7-4-1-2-6(9)5(3-4)8(10)11/h1-3,9H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
1.87

experimental value

1.69

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

1.2

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

1.77

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

1.44

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.86

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.53

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

1.8

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

1.24

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

1.64

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.37

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

1.97

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

1.37

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)