10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:457
Name:1,5-dichloro-2,3-dinitrobenzene
Description:
Labels:Neutral
CAS:28689-08-9
InChi Code:InChI=1/C6H2Cl2N2O4/c7-3-1-4(8)6(10(13)14)5(2-3)9(11)12/h1-2H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
2.51

experimental value

2.34

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

2.06

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

2.5

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

1.92

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

2.44

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

2.49

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

2.45

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

2.02

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

2.12

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.55

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.23

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

1.99

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)