10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:439
Name:1,2,4-trichloro-3,5-dinitrobenzene
Description:
Labels:Neutral
CAS:2678-21-9
InChi Code:InChI=1/C6HCl3N2O4/c7-2-1-3(10(12)13)5(9)6(4(2)8)11(14)15/h1H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
2.6

experimental value

2.42

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

2.08

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

2.61

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

2.88

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

2.39

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

2.3

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

2.59

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

2.64

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

2.56

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

2.77

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.42

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

2.41

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)