10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:333
Name:ethyl 2,3-dibromopropanoate
Description:
Labels:Neutral
CAS:3674-13-3
InChi Code:InChI=1/C5H8Br2O2/c1-2-9-5(8)4(7)3-6/h4H,2-3H2,1H3/t4?

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
2.21

experimental value

1.9

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

1.4

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

2.22

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

2.78

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.99

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.6

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

2.16

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

1.77

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

2.29

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

2.48

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.43

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

2.17

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)