10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:241
Name:5-nitrofuran-2-carbaldehyde
Description:
Labels:Neutral
CAS:698-63-5
InChi Code:InChI=1/C5H3NO4/c7-3-4-1-2-5(10-4)6(8)9/h1-3H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
2.23

experimental value

1.6

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.47

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

2.22

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.97

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.04

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.95

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

2.11

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.82

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

1.83

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

0.81

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.38

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.69

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)