10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1908
Name:4-chloro-2-[(5-chloro-2-hydroxyphenyl)methyl]phenol
Description:
Labels:Neutral
CAS:97-23-4
InChi Code:InChI=1/C13H10Cl2O2/c14-10-1-3-12(16)8(6-10)5-9-7-11(15)2-4-13(9)17/h1-4,6-7,16-17H,5H2

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
3.09

experimental value

2.67

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

2.06

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

3.08

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

2.46

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.9

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.21

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

3.02

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

2.25

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

2.94

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

2.15

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.89

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

1.88

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)