10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1864
Name:pentyl benzoate
Description:
Labels:Neutral
CAS:2049-96-9
InChi Code:InChI=1/C12H16O2/c1-2-3-7-10-14-12(13)11-8-5-4-6-9-11/h4-6,8-9H,2-3,7,10H2,1H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
1.37

experimental value

1.34

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

1.3

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

1.38

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

1.37

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.41

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.35

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

1.33

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

1.36

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

1.3

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.21

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

1.42

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

1.39

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)