10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1755
Name:naphthalen-1-ylmethanol
Description:
Labels:Neutral
CAS:4780-79-4
InChi Code:InChI=1/C11H10O/c12-8-10-6-3-5-9-4-1-2-7-11(9)10/h1-7,12H,8H2

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.13

experimental value

0.26

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.48

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.14

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.25

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

0.32

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.54

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.16

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.29

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.15

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

0.19

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.13

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.28

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)