10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1714
Name:1,3-diethyl 2-propylpropanedioate
Description:
Labels:Neutral
CAS:2163-48-6
InChi Code:InChI=1/C10H18O4/c1-4-7-8(9(11)13-5-2)10(12)14-6-3/h8H,4-7H2,1-3H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.13

experimental value

0.14

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.18

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.12

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.05

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

-0.06

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.09

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.11

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.03

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.05

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

0.05

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.09

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

-0.05

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)