10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1662
Name:tetramethylcyclohexa-2,5-diene-1,4-dione
Description:
Labels:Neutral
CAS:527-17-3
InChi Code:InChI=1/C10H12O2/c1-5-6(2)10(12)8(4)7(3)9(5)11/h1-4H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
1.25

experimental value

1.11

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.94

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

1.26

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

1.63

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

1.29

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.59

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

1.14

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.42

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

1.05

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.02

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

1.07

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.73

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)