10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:166
Name:ethyl 2-iodoacetate
Description:
Labels:Neutral
CAS:623-48-3
InChi Code:InChI=1/C4H7IO2/c1-2-7-4(6)3-5/h2-3H2,1H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
2.92

experimental value

2.53

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

1.71

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

2.91

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

2.88

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

2.22

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

1.59

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

2.87

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

2.21

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

2.92

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

3.0

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

2.95

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

2.74

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)