10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1530
Name:propan-2-ylbenzene
Description:
Labels:Neutral
CAS:98-82-8
InChi Code:InChI=1/C9H12/c1-8(2)9-6-4-3-5-7-9/h3-8H,1-2H3

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.69

experimental value

0.52

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

0.19

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.68

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.51

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

0.26

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

-0.19

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.62

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.25

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.57

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

0.36

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.71

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.22

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)