10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:1478
Name:N-(4-formylphenyl)acetamide
Description:
Labels:Neutral
CAS:122-85-0
InChi Code:InChI=1/C9H9NO2/c1-7(12)10-9-4-2-8(6-11)3-5-9/h2-6H,1H3,(H,10,12)/f/h10H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
-0.22

experimental value

-0.21

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

-0.07

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

-0.21

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

-0.03

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

-0.09

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

-0.07

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

-0.28

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

-0.55

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

-0.2

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

-0.22

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

-0.16

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

-0.06

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)