10967/264 - QDB Compounds

QsarDB Repository

Belfield, S. J.; Cronin, M. T. D.; Enoch, S. J.; Firman, J. W. Guidance for Good Practice in the Application of Machine Learning in Development of Toxicological Quantitative Structure-Activity Relationships (QSARs). PLOS ONE, 2023, 18, e0282924.

Compound

ID:110
Name:2-nitrothiophene
Description:
Labels:Neutral
CAS:609-40-5
InChi Code:InChI=1/C4H3NO2S/c6-5(7)4-2-1-3-8-4/h1-3H

Properties

pIGC50: 40-h Tetrahymena toxicity as log(1/IGC50) [log(L/mmol)] i

ValueSource or prediction
0.51

experimental value

0.31

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (Training set)

-0.1

RF: QSAR model for Tetrahymena pyriformis growth inhibition using the RF algorithm (10-fold cross-validation)

0.52

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (Training set)

0.68

SVM: QSAR model for Tetrahymena pyriformis growth inhibition using the SVM algorithm (10-fold cross-validation)

0.4

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (Training set)

0.2

KNN: QSAR model for Tetrahymena pyriformis growth inhibition using the KNN algorithm (10-fold cross-validation)

0.49

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (Training set)

0.06

XGB: QSAR model for Tetrahymena pyriformis growth inhibition using the XGB algorithm (10-fold cross-validation)

0.43

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (Training set)

1.02

SNN: QSAR model for Tetrahymena pyriformis growth inhibition using the SNN algorithm (10-fold cross-validation)

0.52

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (Training set)

0.9

DNN: QSAR model for Tetrahymena pyriformis growth inhibition using the DNN algorithm (10-fold cross-validation)