10967/257 - QDB Compounds

QsarDB Repository

Oja, M.; Sild, S.; Piir, G.; Maran, U. Intrinsic aqueous solubility: mechanistically transparent data-driven modeling of drug substances. Pharmaceutics 2022, 14, 2248.

Compound

ID:sc5
Name:Aripiprazole
Description:
Labels:
CAS:
InChi Code:InChI=1S/C23H27Cl2N3O2/c24-19-4-3-5-21(23(19)25)28-13-11-27(12-14-28)10-1-2-15-30-18-8-6-17-7-9-22(29)26-20(17)16-18/h3-6,8,16H,1-2,7,9-15H2,(H,26,29)

Properties

logS0: Intrinsic aqueous solubility from single source [log(mol/L)]

ValueSource or prediction
-6.64

Avdeef, A. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET DMPK 2020, 8, 29–77. https://doi.org/http://doi.org/10.5599/admet.766

-5.511

M1: Model with Dragon descriptors from training set 1 (Tight test set)

-5.511

M1: Model with Dragon descriptors from training set 1 (Test sets together)

logS0a: Intrinsic aqueous solubility from multiple sources [log(mol/L)]

ValueSource or prediction
-6.64

Avdeef, A. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET DMPK 2020, 8, 29–77. https://doi.org/http://doi.org/10.5599/admet.766

-5.23

M2: Model with RDKit descriptors from training set 2 (Tight test set)

-5.23

M2: Model with RDKit descriptors from training set 2 (Test sets together)

-5.1

M3: Model with PaDEL and XLOGS descriptors from training set 2 (Tight test set)

-5.1

M3: Model with PaDEL and XLOGS descriptors from training set 2 (Test sets together)

-5.28

M_cons: Consensus model (average of predictions from M1, M2 and M3) (Tight test set)

-5.28

M_cons: Consensus model (average of predictions from M1, M2 and M3) (Test sets together)