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1.QSAR identifier

2.General information



http://www.qsar.it/ 

2.6.Date of model development and/or publication:

2007

2.7.Reference(s) to main scientific papers and/or software package:

[1]Gramatica P, Giani E & Papa E (2007) Statistical external validation and consensus modeling: A

QSPR case study for Koc prediction. Journal of Molecular Graphics and Modelling. 25, 755–766.

DOI:10.1016/j.jmgm.2006.06.005

[2]HYPERCHEM (2002). Release 7.03 for Windows in: Molecular Modeling System, Hypercube,

Inc., Gainesville, FL, USA. http://www.hyper.com/

[3]DRAGON (2005). Software for the calculation of molecular descriptors, Version 5.3 for Windows,

R. Todeschini, V. Consonni, A. Mauri, M. Pavan. http://www.talete.mi.it/

[4]MOBY DIGS (2005). Software for multilinear regression analysis and variable subset selection by

genetic algorithm, Version 1 for Windows, Talete srl, Milan, Italy. http://www.talete.mi.it/ 

2.8.Availability of information about the model:

Non-proprietary. Defined and available algorithm [ref 2; sect 9.2].

Training and prediction sets are available in the Supporting Information

of the related paper [ref 2; sect 9.2], in the attached sdf files in

this QMRF (see Section 9.3) and in the QSARINS database [ref 3,4; sect

9.2].

2.9.Availability of another QMRF for exactly the same model:

None to date.

 

3.1.Species:

3.2.Endpoint:

2.Environmental fate parameters 2.6.Partition coefficient. Organic carbon-sorption partition

coefficient (organic carbon; Koc) 

3.3.Comment on endpoint:

The soil sorption partition coefficient is expressed as the ratio

between chemical concentration in soil and in water, normalized on

organic carbon (Koc). This parameter is an indicator of the

     sorption of chemicals by soils and sediments, thus providing an

     estimation of compound mobility and persistence in these compartments. 

The Koc experimental data for 643 heterogeneous organic compounds were

collected from literature [ref 5-7; sect 9.2] and compiled into a single

dataset. 

These three references were not the primary source of the experimental

data, but a collection of previous literature data, which were already

used to develop published and good-quality QSPR models.

3.4.Endpoint units:

dimensionless

3.5.Dependent variable:

log Koc

3.6.Experimental protocol:

3.7.Endpoint data quality and variability:

3.Defining the endpoint - OECD Principle 1



Data were taken from various sources and collected into a single large

dataset. As stated in section 3.3, we used data already curated and

modelled by various authors [ref 5-7; sect 9.2]:. If more than one Koc

value was available for a single compound, the median of the values was

used.

 

4.1.Type of model:

QSPR - Multiple linear regression model (OLS - Ordinary Least Square)

4.2.Explicit algorithm:

LogKoc model (Split Model)

MLR-OLS method. Model developed on a training set of 93 compounds

 

 

LogKoc model (Full Model)

MLR-OLS method. Model developed on all the available experimental data (training set of 643

compounds)

 

 

GA-OLS

Split Model equation (N. Training set=93): 

LogKoc = -2.19 (±0.30) + 2.10 (±0.14) VED1 - 0.34 (±0.04) nHAcc - 0.31

(±0.05) MAXDP - 0.33 (±0.12) CIC0 

Full Model equation (N. Training set=643): 

LogKoc = -1.92 (±0.11) + 2.07 (±0.06) VED1 - 0.31 (±0.01) nHAcc - 0.31

(±0.02) MAXDP - 0.39 (±0.05) CIC0 

The modeling descriptors are: VED1 (eigenvector coefficient sum from

distance matrix), nHAcc (number of acceptor atoms for H-bonds), MAXDP

(maximal electropological positive variation), CIC0 (complementary

information content index (neighbourhood symmetry of 0 order)). See

section 4.3 for a more detailed description of the four modeling

descriptors.

4.3.Descriptors in the model:

[1]VED1 dimensionless eigenvector coefficient sum from distance matrix [8], related to molecular

size. Is the most iimportant descriptor in the equation, with a positive sign, highlighting that the

bigger compounds are more sorbed than leached

[2]nHAcc dimensionless number of acceptor atoms for H-bonds, related to electronegative atoms of

molecules. Represent a way of taking into account the probability of bond formation between

chemicals and groundwater: this descriptor is negative in sign (inversely related to logKoc) as high

affinity for water precludes soil sorption of the chemicals

[3]MAXDP dimensionless maximal electropological positive variation [1], it takes into account the

electronic distribution in the topological graph and is related to molecule electrophilicity. It represent

a way of considering the probability of bond formation between chemicals and groundwater: this

descriptor is negative in sign (inversely related to logKoc) because high affinity for water precludes

soil sorption of the chemicals

[4]CIC0 dimensionless CIC0 dimensionless complementary information content index

4.Defining the algorithm - OECD Principle 2



(neighbourhood symmetry of 0 order) [ref 9,10; sect 9.2], it is related to molecular size. 

4.4.Descriptor selection:

A total of 1079 molecular descriptors of differing types (0D, 1D, 2D,

3D) were calculated. Constant values and descriptors found to be

correlated pairwise were excluded in a pre-reduction step (one of any

two descriptors with a correlation greater than 0.97 was removed to

reduce redundant information), and a final set of 479 molecular

descriptors were used as input variables for variable subset selection

by genetic algorithm (GA-VSS). 

The models were initially developed by the all-subset-procedure until

two variable models were obtained. Then the GA was applied in order to

explore new combinations of variables, selecting the variables by a

mechanism of reproduction/mutation. The optimized parameter used was the 

cross-validated correlation coefficient R2CVor Q2LOO(leave-one-out). The

GA-VSS, by Ordinary Least Squares regression (OLS), included in MOBYDIGS

(and now reproduced in QSARINS [ref 4,5; sect 9.2]), was applied to

select only the best combination of descriptors from the input pool: 4

descriptors selected from 479.

4.5.Algorithm and descriptor generation:

Multiple Linear Regression OLS method was applied to generate the model

using the molecular descriptors calculated by the DRAGON software. 

Descriptors were generated with DRAGON 5.3 from HYPERCHEM 7.03 optimized

structures (*.hin files). Any user can re-derive the model calculating molecular

descriptors with the DRAGON software (also from SMILES strings) and

applying the given equation.

4.6.Software name and version for descriptor generation:

DRAGON (2005, version 5.3 for Windows)

Chemical structures, drawn with HyperChem 7.03 and used as input file (*.hin) for DRAGON 5.3,

energy minimised using MM+ procedure. These structures are available in QSARINS (QSARINS-

Chem module[ref 4; sect 9.2] enabling an end user to regenerate the descriptors for a new

compound

Prof. R.Todeschini - distributed by Talete srl, via Pisani 13, 20124 Milano, Italy

http://www.talete.mi.it/

4.7.Chemicals/Descriptors ratio:

Split Model: 23.25 (93 chemicals / 4 descriptors) 

Full Model: 160.75 (643 chemicals / 4 descriptors)

 

5.1.Description of the applicability domain of the model:

The applicability domain of the model was verified by the leverage

approach and fixed boundaries were used to define both structural and

response outliers (see section 5.4). The plot of leverages (hat

diagonals) versus standardised residuals, i.e. the Williams plot,

verified the presence of response outliers (i.e. compounds with

cross-validated standardized residuals greater than three standard

deviation units) and chemicals very structurally influential in

5.Defining the applicability domain - OECD Principle 3



determining model parameters (i.e. compounds with a leverage value (h)

greater than 3p'/n (h*), where p' is the number of model variables plus

one, and n is the number of the objects used to calculate the model). For

new compounds without experimental data, leverage can be used as a

quantitative measure for evaluating the degree of extrapolation: for

compounds with a high leverage value (h > h*), that are structural outliers,

predictions should be considered less reliable. In QSARINS the Insubria

graph allows to identify for which chemicals the predictions are inter-

or extrapolated by the model. Response and descriptor space: 

Range of experimental LogKoc values: -0.31 - 6.33. 

Range of descriptors values: VED1: 1.414 - 5.646; nHAcc: 0 - 11; MAXDP: 0

- 6.199; CIC0: 0.4 - 4.89.

5.2.Method used to assess the applicability domain:

As stated in section 5.1, the structural applicability domain of the

model was assessed by the leverage approach, providing a cut-off hat

value (h*=0.023). 

HAT values are calculated as the diagonal elements of the HAT matrix: H

= X(XTX)-1XT 

5.3.Software name and version for applicability domain assessment:

QSARINS

AD re-verified with QSARINS, software for the development, analysis and validation of QSAR MLR

models, ver. 2.2, 2015

Paola Gramatica, email: paola.gramatica@uninsubria.it

http://www.qsar.it/

5.4.Limits of applicability:

SPLIT Model Domain 

Outliers for structure, hat value > 0.16 (h*): chlordecone (258),

metasulfron methyl (628), thiameturon methyl (637). 

Outliers for the response,standardised residuals > 3 standard

deviation units:methylurea (330), 2,3,5-trimethylphenol (358),

     benfluralin (408), 2,6-dichlorobenzamide (427),

     2,6-dinitro-n-propyltrifluoro-p-toluidine (432), toxaphene (499),

     dinitramine (556), and oxyfluoren (591) in the training set; trifluralin

     (394) in the prediction set. 

FULL Model Domain:  

Outliers for structure, hat value > 0.023 (h*): metasulfron

     methyl (628), thiameturon methyl (637).  

Outliers for the response, standardised residuals > 3

     standard deviation units: 2,3,5-trimethylphenol (358),

     2,6-dichlorobenzamide (427) and toxaphene (499).

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:
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CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: Yes

INChI: No

MOL file: No

6.3.Data for each descriptor variable for the training set:

All

6.4.Data for the dependent variable for the training set:

All

6.5.Other information about the training set:

The training set of the Split Model consists of 93 organic

     compounds, with a highly heterogeneous chemical space; in fact the

     compounds include almost all the principal functional groups. The

     chemicals are mainly pesticides, but also various organic pollutants are

     present. In addition the set has a very large range of logKoc values:

     -0.31 to 6.02. Training and prediction set are structurally balanced,

     being the splitting based on the structural similarity analysis,

     performed with Kohonen artificial neural network (K-ANN, or Self

     Organizing Maps, SOM) method included in KOALA software (Rel. 1.0 for

     Windows, 2001. R.Todeschini, V. Consonni, A. Mauri, Milan, Italy). 

6.6.Pre-processing of data before modelling:

Transformation of Koc into logarithmic units (log Koc). If more than one

value was available for a single compound, the average of the values was

used. 

Only processed data are given.

6.7.Statistics for goodness-of-fit:

Split model (N Training = 93): R2 = 0.82 

s = 0.539 

F = 98.99 

RMSE = 0.523

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

Split model (N Training = 93): Q2LOO= 0.80

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

Q2LMO was not calculated, since we calculated Q2BOOT

(see 6.11).

6.10.Robustness - Statistics obtained by Y-scrambling:

R2
Y-SC= 4.32 

Q2
Y-SC= 3.36. 

The low values of Y-scrambled R2and Q2mean

that the proposed model is not given by chance

6.11.Robustness - Statistics obtained by bootstrap:

Q2
BOOT= 0.79. 

The high value of Q2BOOT means that the model is robust and

stable.



6.12.Robustness - Statistics obtained by other methods:

No information available.

 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: Yes

INChI: No

MOL file: No

7.3.Data for each descriptor variable for the external validation set:

All

7.4.Data for the dependent variable for the external validation set:

All

7.5.Other information about the external validation set:

The external validation set ("prediction set") consists of

     550 heterogeneous organic compounds with a range of logKoc values from 0

     to 6.33. The training and prediction sets are structurally balanced,

     since the splitting was based on a structural similarity analysis

     performed by SOM (as stated in section 6.5).

7.6.Experimental design of test set:

The splitting of the original data set (643 compounds) into a

   training set of 93 compounds and a prediction set of 550 compounds was

   realized by Kohonen artificial neural network (K-ANN or Self Organizing

   Maps, SOM), using the software KOALA (as reported in sections 6.5 and

   7.5). Through its clustering capabilities, SOM ensures that both sets are

   homogeneously distributed within the entire area of the descriptor space;

   in this case the chemicals in both sets, selected to maximize the coverage

   of the descriptor space (i.e. representativity), represent the structural

   variety of the studied data set in a balanced way. The selected training

   chemicals are those with the minimal distance from the centroid of each

   cell in the top map. In this case, the representative points of the

   prediction set are close (in the same cell of the top map) to

   representative points of the training set in the multidimensional

   structural descriptor space [ref 11; sect 9.2].

7.7.Predictivity - Statistics obtained by external validation:

Q2ext-F1[ref 12; sect 9.2] = 78.11

 

Q2ext-F2[ref 13; sect 9.2] = 77.96 

Q2ext-F3[ref 14; sect 9.2] = 79.31 

RMSE = 0.56 

CCC [ref 15,16; sect 9.2]= 88.33 

The high values of external Q2, calculated in different ways (see
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references for more details), and CCC, show that the proposed model is

predictive for new chemicals. In fact, the model shows good results when

applied to the chemicals never seen during the model development

(chemicals in the prediction set).

7.8.Predictivity - Assessment of the external validation set:

The validation set (prediction set) is large: in fact it is rare

     in QSAR modeling that an original data set of 643 chemicals is split in

     such a way: only 93 for training (to find the best modeling descriptors)

     and 550 for verify the predictivity on chemicals not used in model

     development. The splitting methodology, based on similarity analysis

     (explained in section 7.6), allows for the selection of a meaningful

     training set and a representative prediction set. Training and

     prediction set are balanced according to both structure and response. In

     particular, for response the range of logKoc values are [-0.31 - 6.02]

     and [0 - 6.33] respectively for training and prediction set. In

     particular, regarding the structural representativity of training and

     prediction set, the range of descriptor values are as follows: VED1:

     training set [1.414 - 5.312], prediction set [1.414 - 5.646] nHAcc:

     training set [0 - 11], prediction set [0 - 11] MAXDP: training set

     [0.083 - 5.57], prediction set [0 - 6.199] CIC0: training set [0.4 -

     4.810], prediction set [0.4 - 4.891] The applicability domain of the

     model on the prediction set was verified by the Williams plot: 8

     compounds out of 550 of the prediction set are outliers for the response

     (not well predicted) and only 2 are structural outliers (extrapolated,

     even if, in this case, verified as good predictions). These results are

     indicative of the large applicability domain of the proposed model. 

7.9.Comments on the external validation of the model:

In addition, to verify the external predictivity of the model, the

experimental data set of 643 compounds was split into three different

sets: 

(a) a prediction set of 160 chemicals (25% of the total set), selected

by activity sampling from the data set ordered by the response value,

taking every fourth chemical from the set (splitting by ordered

response); 

(b) a training set of 307 chemicals on which to redevelop the model,

selected by SOM (300 epochs, 10 x 10 map) (48% of the total set); 

(c) a prediction set of 176 chemicals selected by SOM (27% of the total

set). 

Also redeveloping the model on the wider training set (b), the variables

selected by GA in the best OLS model are VED1, nHAcc, MAXDP and CIC0.

The model, validated with the two prediction sets (a, c), has good

performances both in fitting and predicitvity (R2=0.78, Q2
LOO=0.78,

R2
pred (a)=0.77, R2

pred (c)=0.82). 

Good and externally predictive models are also obtained on the same

variables even if scrambling is performed between the training and the

different prediction sets.



 

8.1.Mechanistic basis of the model:

The model was developed by statistical approach. No mechanistic basis

for this physico-chemical property was set a priori, but a mechanistic

interpretation of molecular descriptors was provided a posteriori (see

8.2).

8.2.A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation of molecular descriptors

(ordered by importance, according to the standardized coefficient

values): 

VED1: eigenvector coefficient sum from distance matrix, encoding the 2D

molecular dimension (most important descriptor). 

nHAcc: number of acceptor atoms for H-bonds. 

MAXDP: the maximal electropological positive variation. 

CIC0: a complementary information content index (neighbourhood symmetry

of 0 order), related to the differences in the atomic distribution. 

The nHAcc descriptor, which is related to electronegative atoms of

molecules, and MAXDP, related to molecule electrophilicity, represent

different ways of taking into account the probability of bond formation

between chemicals and groundwater: as expected, these descriptorsare

     negative in sign (inversely related to logKoc) as high affinity

for water precludes soil sorption of the chemicals. The other two

descriptors (VED1 and CIC0) are related to molecular size, but their

relevance is very different: the more important VED1 has a positive

sign, highlighting that the bigger compounds are more sorbed than

leached, the less relevant descriptor CIC0 is probably useful only to

improve model quality in order to adapt some particular chemicals.

8.3.Other information about the mechanistic interpretation:

No information available.

 

9.1.Comments:

Given the results of the external validation, this model has a

     large applicability domain and therefore unsuccessful applications are

     probably very reduced. Anyhow, the check of outliers by the Williams

     plot and the Insubria graph for chemicals without experimental data (see

     section 5.1) will allow to verify the model applicability.  

As for all our models, to predict logKoc for new chemicals without

     experimental data, it is suggested to apply the equation of the Full

     Model, developed on all the available chemicals (N=643). 

The equation (reported also in section 4.2) and the statistical

     parameters of the full model are:  

LogKoc = -1.92 (±0.11) + 2.07 (±0.06) VED1 - 0.31 (±0.01) nHAcc -

     0.31 (±0.02) MAXDP - 0.39 (±0.05) CIC0  

N = 643; R 2 = 0.79; Q 2 = 0.79; Q 2BOOT 

8.Providing a mechanistic interpretation - OECD Principle 5

9.Miscellaneous information



     = 0.79; s = 0.547; RMSE = 0.545; RMSE LOO = 0.550 All the modelling descriptors were verified,

and reproducible, in

     the free on-line version of the DRAGON software

     (http://www.vcclab.org/lab/edragon/).  

In addition, a Consensus model, calculated by averaging the

     predicted values from the best 10 individual models (N TR=93,

     N P=505), was also developed and proposed in the paper [ref

     2; sect 9.2]

Fitting (R2 = 0.82) and predictive ability (verified by

     R2ext = 0.80) for the Consensus model are better than for any

     individual model. Finally, our models were compared with the EPI Suite

     model for Koc (KOCWIN), characterized by lower values of R2 

     (0.78) and higher RMSE for the prediction set chemicals (0.635).

     Comparing the residuals between the experimental and predicted logKoc

     values, our model showed better results if compared to KOCWIN, with

     lower mean and maximum residuals, and lower number of chemicals with

     residual > 1.5 (See Tables 2 and 4 the paper [ref 2; sect 9.2]). 
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